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Abstract. The energy of a local minimum obtained by the simulated annealing generally 
depends on a time T in which a complex system has been immersed in a heat bath. How 
the resultant energy E ( r )  scales with a time 7 is an interesting question. The diffusion 
process of  a point in a wiggly parabola is analysed to discuss the scaling. The model is 
exactly solvable and the energy is found to scale as E ( i ) = r + c ( l n  T)-'. T h i s  scaling is 
considered rather common to general complex systems. However, the limit E obtained 
from practical data is not necessaiily the ground state energy o f a  system. 

Simulated annealing is a physical analogy for heuristics to obtain approximate solutions 
for combinatorial optimization problems (Kirkpatrick er al 1983, tern? 1985). The 
point is to find a fairly low energy state of the imaginary physical system whose energy 
is the cost function of an optimization problem. In order to obtain a sufficiently low 
energy state of a physical system, one generally has to anneal the system very slowly. 
The complex physical system has a tremendous number of local minima and there is 
no general scheme which enables us to find the ground state in a finite time. Furthermore, 
the level of the ground state is generally not known in advance, and one does not 
know the residual energy of the resultant state left for the ground state. 

In order to get an estimate of the residual energy, Crest et a1 (1986) proposed an 
empirical law for how the resultant energy E depends on a time T spent in annealing. 
Their proposal is twofold: E ( T ) =  E,+c(ln T)- '  for the problems NP, and E ( T ) =  
E,+c'T-" for P. Their numerical data are not enough, however, to ensure the law. 
This gave rise to a theoretical issue by Huse and Fisher (1986). They first discussed 
the annealing process of a two-level system. The average energy of a two-level system 
scales as T - ~ ,  whose exponent S proportionally depends on the energy difference of 
the two minima. For a system composed of the independent two-level systems, they 
got the scaling E ( T )  = c(ln T) -*  by integrating the individual energy T-' over various 
energy differences S. By taking into account the small scale low energy excitations in 
a general physical system, they concluded that the scaling should be of the form 
E ( T )  = Eo+ c(ln T)-',  with its exponent 4's 2. The exponents 2 and 5 above are obtained 
under the assumption that the distribution of excited state energies of individual 
two-level systems does not depend on the energy. The exponents are, however, sensitive 
to the distribution of excited state energies, and thus the upper bound of 4' is not so clear. 

We wish to discuss the exponent 4' from another point of view. We found a solvable 
model whose energy turned out to scale E ( T )  = c(ln T ) - ' .  The exponent 1 here does 
not depend on the dimensionality of the model system, nor on the details of the rough 
shape of the energy surface. Thus the exponent 1 appears rather common to various 
complex systems. However, in the case that there is a singular cusp in the global shape 
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of the energy surface, we have not succeeded in specifying the exponent and the 
problem is thus still open in this respect. 

The system corresponding to a complex optimization problem generally has an 
exponential number of local minima. In order to describe the circumstance in which 
a global minimum is hidden among a tremendous number of local minima, we first 
discuss the random walk of a point in the energy landscape depicted in figure 1. The 
system has two scales: each local minimum is surrounded by energy barriers of O ( B ) ,  

us assume that the local minima are arranged at regular intervals of distance a, and 
the macroscopic position of the ith local minimum is x = ai. The master equation 
describing the hopping between neighbouring local minima is given by 

:hej aie &s:i.;biitid ovii a basin E = x2/: fOi 'iiiaciosco$c' &siaiice x. Lei 

) p, (1) dp, /dt  = e-Bf Tpi+, +e-lB+A,.cJf Tp. - (e--Bf T + e - l B + A , ) f T  
I - ,  

where T is the temperature and Ai denotes the energy difference between adjacent 
local minima, Aj  = a 2 ( ( i +  1)2- i 2 ) / 2 .  We are able to derive from (1) the Fokker-Planck 
equation for the coarse-grained distribution function of the macroscopic distance x: 

JP/df  = y (  T)d(xP)/dx+ D( T)d'P/dx2 (2) 
where both the coefficient y and D should be functions of the temperature T, of the 
form y =  n2T-'  and D =  Ty. In order to obtain (2) from (I), we have assumed 
that a'/ T<< 1. The approximation is not valid until zero temperature but it holds until 
T-&, in which a can be taken sufficiently small. 

Figure I ,  Characteristic shape of the energy landscape of curre"! ln!eres! 

Let us consider the annealing process of an ensemble of the systems whose average 
energy is initially high. We wish to establish how the average energy, y( t )  = ( E ) (  f )  = 
jdxx2/2P(x,  f ) ,  relaxes with a time spent in annealing. The evolution equation for 
the average energy is 

d y / d f = - 2 y ( T ) y + D ( T )  . , (3) 
where the temperature T is then a function of time 1. If the average residual energy y 
is known, we are able to obtain an optimal annealing schedule by choosing T(f )  so 
as to keep minimizing the RHS of (3). In this optimal schedule, the residual energy y 
obeys the equation, 

dy/df = - y  e-'fy (4) 

where we have rescaled the time f + 2 f / B e  and the energy y+Zy/B, respectively. In 
the case where y is sufficiently small compared with unity, the RHS of (4) satisfies the 
inequalities, 

( 5 )  -Y'"-Jfl'+c' exp(-y-l~"+" ) < -y exp(-y-') c - y 2  exp(-y-') 
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where e is of the order of y. By integrating these two bounds for the phase flow, the 
solution of (4) is found to satisfy the inequalities, 

(In T ) - ' - ~ < ~ ( T ) < ( ~ T ) - '  ( 6 )  

y ( 7 )  = ( E ) ( T )  - B/ln T (7 )  

T( I )  - B/ln I. 

where E is of the order of y. Thus in the original units, the energy scales as 

in the asymptotic limit. The optimal annealing schedule is then 

(8) 
Geman and Geman (1984) obtained the general bounds of temperature schedules in 
which one can eventually get theground state with probability unity in the limit, T+CO. 

Equation (8) is in accordance with the lower bound for this. 
The asymptotic form of the residual energy, equation (7) is, however, not sensitive 

to the details of a temperature schedule, T ( I ) .  For most temperature schedules in 
which the temperature is smoothly lowered from T +  B to T=O, one gets the same 
asymptotic form, equation (7). 

In addition the qualitative aspect ofthe result is also not sensitive to the dimensional- 
ity of the system. The high-dimensional system can be decomposed into independent 
systems of the form of (2) and the total energy is the sum of the individual energies. 
Thus the change of dimensionality induces a simple modification of the factor of the 
result:On the other hand, the change of dimensionality induces drastic change in the 
'density of states'. The invariance of the power, -1, for In T against the change of the 
distribution is thus rather remarkable and should be contrasted with the result of Huse 
and Fisher, which can be sensitive to the distribution of the excited state energies of 
two-level systems. 

The scaling behaviour of the residual energy, (7) ,  appears rather general with 
respect to the dimensionality. However, we have restricted consideration to the quad- 
ratic global potential. In order to consider the dependence of the scaling behaviour 
on the shape of the potential surface, we discuss here non-quadratic systems. Consider 
a one-dimensional system E = x-/a,  x a 0. In general cases, a # 2, we cannot obtain 
the closed form, such as (3), for the average energy, y =J:dxx"/aP(x, t), but 

a-' d(x")/dt = -2y(x2"-')+(a - 1) D(x"-~). (9) 
This equation (9) is obtained via partial integration, and is valid for a > 1. If the 
distribution function is sufficiently compact, equation (9) can be read as 

dy/df=-2y(ay)"'"+D(a-l)(ay)''2'". (10) 

dy/d l  = -y2-2/" e-'/Y (11) 

At this stage, the optimal temperature schedule can be obtained, giving 

where we have rescaled the time and the energy. Solutions of this equation can also 
he bounded by the inequalities (6), which give the same asymptotic form, y -  l / ln T. 

The scaling ( 7 )  thus holds even in the non-quadratic potential, E = xm/a, as far as 
there is no cusp, or a > 1. The energy scaling in the case where the global potential 
has a cusp is still open here, as equation (9) is not valid for O <  a S 1. 

We have analysed a few model systems, which turned out to exhibit the same 
scaling behaviour. However, we have assumed here some kind of continuity in the 
global structure of the wiggly surface, and have not succeeded in analysing the case 
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in which singular structures are present in the global shape. There is no general scheme 
to classify wiggly surfaces into 'continuous' and 'singular' ones. However, some kind 
of continuity would be expected if the cost function is expressed by a low-order 
polynomial of elements. Bernasconi (1987) showed a pathological case in which a 
system has 'golf-hole-like' structure. The system consists of four-body interaction terms. 
Even in such a case, the system exhibits the same scaling behaviour, E ( T )  = E + c/ln T, 

for an intermediate time scale 7 which is already sufficiently long for practical numerical 

E can be some 'global' minimum over the restricted region where the singular parts 
are excluded. 

In addition to this, we must keep in mind that there should be model systems in 
which we cannot assume continuity in any sense. A white noise potential configuration 
proposed by Strenski and Kirkpatrick (1990) in another context exemplifies the circum- 

jiiiiii:atioii. w c  canna: canc!i;de :ha: :he ! i ~ , :  E is :he g:oiind s:a:e ene:gy. Thi ! i d  

s:Bxce, where the energy sca!ing is yet :e be c!ari!?ed. 

We would like to thank Yoshiki Kuramoto and Tsuyoshi Chawanya for helpful 
discussion. The present study was extended further via discussion with Daniel Fisher 
and Joachim Buhmann, when one of us ( S S )  joined the Aspen workshop. 
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